WebHierarchical multi-agent reinforcement learning Nomenclature A. Indexes and Sets t ∈ T Index and set of time steps i ∈ I Index and set of repair crews (RCs) d ∈ E D Index and set of electric demand (ED) d ∈ G D Index and set of gas demand (GD) g ∈ D G Index and set of diesel generators (DGs) g ∈ G G Index and set of gas-fired generators (GGs) WebHierarchical MARL. Earlier studies have tried to resolve the sparse-reward MARL problem by adding a hierarchical structure to decompose the main problem into task-dependent subproblems. Tang et al. (2024) proposed a hierarchical MARL framework with temporal abstraction to solve co-operative MARL tasks.
Hierarchical Model: Definition - Statistics How To
Web15 de fev. de 2024 · In this regard, multi-agent reinforcement learning (MARL) is a promising active research field that joins the merits of both multi-agent systems and data-driven approaches, and can efficiently handle decision-making problem in a multi-agent environment featuring uncertainties and complexities. Web11 de ago. de 2024 · This review article has mostly focused on recent papers on Multi-Agent Reinforcement Learning (MARL) than the older papers, unless it was necessary, and discussed some new emerging research areas in MARL along with the relevant recent papers. Deep Reinforcement Learning has made significant progress in multi-agent … oof army
(PDF) UAV Swarm Confrontation Using Hierarchical Multiagent ...
Web13 de mar. de 2024 · Multi-agent reinforcement learning (MARL) algorithms have made great achievements in various scenarios, but there are still many problems in solving sequential social dilemmas (SSDs). In SSDs, the agent’s actions not only change the instantaneous state of the environment but also affect the latent state which will, in turn, … Web8 de jul. de 2024 · Keywords: multi-agent reinforcement learning; hierarchical MARL; credit assignment 1. Introduction Over recent decades, neural networks trained by the backpropagation method made huge progress in supervised tasks, such as image classification, object detection, and nat-ural language processing [1]. The combination … Web1 de jun. de 2016 · The proposed MARL-based hierarchical correlated Q-learning (HCEQ) considers the coordination of implemented actions and information interaction among the MARL agents to optimize the joint equilibrium actions of AGC generators for the improved overall GCD performance, and it has been thoroughly tested and evaluated on the China … iowa central baseball schedule 2021